Geometrically Nonlinear Theory of Composite Beams with Deformable Cross Sections
نویسندگان
چکیده
Aone-dimensional theory of slender structures with heterogeneous anisotropic material distribution is presented. It expands Cosserat’s description of beam kinematics by allowing deformation of the beam cross sections. For that purpose, a Ritz approximation is introduced on the cross-sectional displacement field, which defines additional elastic degrees of freedom (finite-sectionmodes) in the one-dimensionalmodel. This results in an extended set of beam dynamic equations that includes direct measures of both the large global displacement and rotations of a reference line, and the small local deformations of the cross sections. Two situations are studied in which this approach provides a simpler alternative to shell models with comparable fidelity. First, we look at the detailed structural response of composite beams with distributed loads. In particular, the case of a composite box beamwith embedded piezoelectric actuators is considered. Second, this methodology is applied to study the low-frequency response characterization of composite beams. Numerical results in both cases show that a reduced set of finite-section modes allows a full description of the actual three-dimensional displacement field using a strictly one-dimensional formulation.
منابع مشابه
Simple Two Variable Refined Theory for Shear Deformable Isotropic Rectangular Beams
In this paper, a displacement-based, variationally consistent, two variable refined theory for shear deformable beams is presented. The beam is assumed to be of linearly elastic, homogeneous, isotropic material and has a uniform rectangular cross-section. In this theory, the beam axial displacement and beam transverse displacement consist of bending components and shearing components. The assum...
متن کاملSize-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory
In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...
متن کاملBending, buckling and free vibration responses of hyperbolic shear deformable FGM beams
This study investigated bending, buckling, and free vibration responses of hyperbolic shear deformable functionally graded (FG) higher order beams. The material properties of FG beams are varied through thickness according to power law distribution; here, the FG beam was made of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the effect of shear deformation i...
متن کاملGeometrically nonlinear analysis of axially functionally graded beams by using finite element method
The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...
متن کاملNumerical Analysis of Composite Beams under Impact by a Rigid Particle
Analysis of a laminated composite beam under impact by a rigid particle is investigated. The importance of this project is to simulate the impact of objects on small scale aerial structures. The stresses are considered uni- axial bending with no torsion loading. The first order shear deformation theory is used to simulate the beam. After obtaining kinematic and potential energy for a laminated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007